

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [105]

DETEL SERIAL DATA TRANSMISSION PROTOCOL FOR THE

COMMUNICATION OF AN IBM-PC WITH THE MDxx SERIES OF

PROGRAMMABLE LOGIC CONTROLLERS

Mustafa Dülger

Mechanical Engineering Department, Faculty of Engineering, University of Istanbul

Cerrahpasa, Istanbul 34320, Turkey

DOI: 10.5281/zenodo.3235361

KEYWORDS: Transmission Protocol, PC, Telegram, DETEL, ISR, Slave, Master.

ABSTRACT
In this paper a new serial transmission protocol, DETEL, is designed and presented. DETEL protocol is

developed to provide a reliable communication between an IBM-PC and a Programmable Logic Controller,

PLC, of type MDxx series. Here the IBM-PC acts as a master (programmer) device and the PLC acts as a slave

device. The integrity of the data to be transferred is discussed. OSI model of the DETEL protocol is presented.

Link-layer and application-layer protocols are implemented. DETEL Protocol is implemented on both master

and server side devices. A software driver is developed for the master device in C++. A micro-controller board,

on which a virtual PLC machine of type MDxx series is installed, is used as a slave device. A driver for the slave

device is developed in avr-assembler language.

INTRODUCTION
The serial data transmission between two communicating electronic devices needs a certain data transmission

protocol so that both agents of the transmission clearly understand each other. A typical master-slave system

connected by a serial cable (i.e. RS232) is shown in Fig.1. The master device is an IBM-PC and the slave device

is a Programmable Logic Controller, PLC, of type MDxx series [1]. The master sends a telegram to the slave.

The slave should interpret the received telegram and operate accordingly.

Fig.1: Master Slave Type System

OSI (Open Systems Interconnection) is a reference model for how network agents communicate [2]. Seven

abstract layers are defined in OSI reference model. The first layer in OSI model, physical-layer, defines physical

medium by which the bit stream is transmitted. The second layer in OSI model, data-link-layer, defines the

protocol according to which data telegram is encoded/decoded into/from byte stream. The last layer in OSI

model, application-layer, defines the protocol how the application data should be interpreted. It is then assured

that both master and slave devices interpret the application data uniquely.

The minimum requirement for the communication is that first, second and last layers in OSI model must be

implemented. In this work, a new serial data transmission protocol, DETEL, is designed obeying OSI reference

model.

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [106]

DETEL SERIAL DATA TRANSMISSION PROTOCOL
DETEL is a well-defined data transmission protocol to transmit data in a master-slave system. It is developed

primarily to achieve data transmission between the host PC and MDxx series of PLCs. OSI Model of the

DETEL protocol in comparison with that of Modbus is given in Fig.2.

Fig.2: OSI Reference Model of the DETEL Serial Data Transmission Protocol

As it is clear from Fig.2, physical layer of the DETEL is implemented by using RS232 serial connection. It can

be further extended to other hardware connections (RS485 for instance).

DETEL-T telegram is developed to implement data link layer of the DETEL transmission protocol in OSI

reference model. It is analogous to the RTU and/or ASCII transmission in the OSI reference model of the

corresponding Modbus protocol. DETEL-A protocol implements the application layer of the DETEL

transmission protocol. DETEL-A is developed for the programming software KUMANDA which runs on the PC

in order to program MDxx series of PLCs [3].

DETEL-T SERIAL DATA TRANSMISSION TELEGRAM
Fig.3 gives the schematic of the DETEL-T serial data transmission telegram. As seen from Fig.3, the telegram is

made up of four segments. They are start segment, control segment, data segment and end segment.

Fig.3: Schematic of the DETEL-T Serial Data Transmission Telegram

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [107]

The start segment contains the Start-Byte signalising the start of the telegram. It is indexed by 0 in the telegram.

Its value is fixed and equal to 0xFD.

Control segment is located next to the Start-Byte and contains control bytes. There are fixed number of control

bytes (11 control bytes). They are indexed through digits 1 to 11 (CTRL-1, CTRL-2. …., CTRL-11). Last control

byte, CTRL-11 keeps the number of data bytes in data segment. The rest of the control bytes are application

specific and left as unimplemented.

Next to the control segment is the data segment. It contains data bytes. The data segment stores row information

to be passed. Maximum of 255 (0xFF) data bytes can be allocated in this segment. The length of data segment is

variable and denoted by CNT. CNT is always given by the control byte CTRL-11 in the telegram.

The last segment is the end segment and contains only the End-Byte. The End-Byte signalises the end of the

telegram.

Minimum telegram size occurs when the length of the data segment is null. In this case, there are Start-Byte,

eleven control bytes and End-Byte. They sum altogether to 13 bytes. Maximum telegram size is 268 and it

occurs when the length of the data segment is 255. In this case the data segment contains 255 data bytes.

Detailed description of each byte in the DETEL-T telegram is given in table Table.1.

Table.1: Illustration of DETEL-T Telegram

Index segment member Explanation

0 start XON start of the telegram

1 control CTRL-1

2 control CTRL-2

3 control CTRL-3

4 control CTRL-4

5 control CTRL-5

6 control CTRL-6

7 CTRL-7 .

8 control CTRL-8

9 control CTRL-9

10 control CTRL-10

11 control CTRL-11 CTRL-11 = CNT. CNT is the number of data bytes in data segment

12 data DAT0 Data (Byte 0)

13 data DAT1 Data (Byte 2)

14 .. DAT2 Data (Byte 3)

..

..

..

CNT+10 data DAT[CNT-2] Data (Byte CNT-2)

CNT+11 data DAT[CNT-1] Data (Byte CNT-1)

 crc CRC-L Cyclic Redundancy Check. Not yet implemented

 crc CRC-H Cyclic Redundancy Check. Not yet implemented

CNT+12 end XOF end of the telegram

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [108]

DETEL-T TELEGRAM INTEGRITY
Because DETEL-T telegram is a well-structured telegram, following requirements must be fulfilled in the

implementation of the telegram.

1. Start-Byte and End-Byte must have unique values

While the stream of bytes is being received by a slave device, the start and end of the telegram in the stream

must be recognized by the slave device. It is made possible by defining unique bytes for start and end of the

telegram. Start-Byte, XON, is equal to 0xFD and End-Byte, XOF, is equal to 0xFE per definition.

2. Control segment must be fixed in size.

For the sake of the integrity of the whole telegram all control bytes must exist. This requires that the set of

control bytes must appear completely at the beginning of the telegram. Therefore first eleven bytes next to

the Start-Byte in the telegram are always regarded as control bytes by the slave device.

3. Start-Byte and End-Byte must not be repeated in telegram

If the Start-Byte is repeated in data or control segment, the integrity of the telegram is broken down. In this

case the telegram start is shifted to the position where the Start-Byte is repeated. From here on following

eleven bytes are regarded as control bytes. This in turn leads to wrong telegram construction. Therefore the

Start-Byte must neither in control nor in data segment be repeated.

Similarly if the End-Byte is repeated in control or data segment, the integrity of the telegram is again broken

down. In this case early end of the telegram occurs causing the rest of the bytes to fail. Occurrence of End-

Byte in control or data segment must hence be avoided.

4. Transmission of DETEL-T Telegram should obey the half-mode transmission.

One can raise the question how a telegram can be constructed in them a data byte has a value equal to either

Start-Byte or End-Byte. To solve this problem a telegram transmission scheme, referred to as half-mode

transmission, is developed. In this mode of telegram transmission, occurrence of Start-Byte or End-Byte in

data segment does not break down the integrity of the telegram.

These requirements are taken into account in the design of DETEL-T telegram. Details of half mode telegram

transmission are going to be discussed in the next section.

HALF MODE TRANSMISSION OF DETEL-T TELEGRAM (MASTER SIDE)
DETEL-T telegram is transmitted in two different modes. They are full-mode and half-mode. The full mode

implementation is out of the scope this article. The half-mode implementation will be discussed in this section.

In the half-mode, master-device has a FIFO (First In First Out) transmission Queue. Fig.4. shows schematic

representation how DETEL-T telegram is allocated in the transmission Queue of the master device just before

the transmission. The first byte entering the Queue will be transmitted first.

Master-device does not allocate the DETEL-T telegram byte by byte in the transmissions Queue. Instead, the

allocation of DETEL-T telegram in the Queue is performed as follows;

Start-Byte, XON, signalising the start of the telegram is first allocated in the transmission Queue and hence

transmitted first. Following the Start-Byte, control bytes are allocated in the transmission Queue and then they

are transmitted in the order they are put in the Queue. Data bytes, on contrary to start and control bytes, are not

directly allocated in the transmission queue. Each data byte is first expanded into two bytes and resulting two

bytes are then allocated into the transmission Queue. The resulting bytes keep low and high nibbles of the

original data byte respectively.

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [109]

Fig.4: Allocation of DETEL Telegram in the Transmission Queue of the Master Device

For example the original data byte D in the binary form

 D: d7 d6 d5 d4 d3 d2 d1 d0

is expanded to following bytes

 E0: 0 0 0 0 d3 d2 d1 d0

E1: d7 d6 d5 d4 0 0 0 0

E0 contains low nibble of the original data byte D. E1 contains high nibble of the original data byte D

respectively. E0 is first allocated in the transmission Queue and transmitted first. E1 is then allocated in the

transmission Queue and transmitted next. That means low nibble byte of the original data byte is transmitted

first and high nibble byte of the original data byte is transmitted next.

Low nibble of the original data byte lies in the range of [0x00 – 0x0F]. High nibble of the original data byte lies

in the range of [0x00, 0x10 – 0xF0]. Start-Byte- and End-Byte are defined so that they lie out of above ranges.

Therefore Start-Byte is defined as 0xFD and End-Byte is defined as 0xFE. As per definition both Start-Byte and

End-Byte have high and low nibbles different than zero.

Let us assume original data byte in the data segment is equal to Start-Byte in value. In this case low nibble E0

will be equal to 0x0D and high nibble E1 will be equal to 0xF0. Both nibbles are transmitted separately and will

not destroy integrity of the telegram because each differs from the Start-Byte. Similarly if data byte is equal to

End-Byte in value, integrity of the telegram is also preserved.

If we put any control byte in the control segment equal to Start-Byte or End-Byte in value, integrity of the

telegram is however broken down because control bytes are allocated in the transmission Queue without

expansion. It cannot hence be defined any control byte equal to either Start-Byte or End-Byte in value.

Therefore a special attention is to be given to the definition of the control bytes. Especially control bytes

keeping address values are to be carefully defined so that they are not equal to Star- or End-Byte in value.

Otherwise the telegram gets corrupted.

End-Byte, XOF, indicating the end of the telegram is lastly put in the transmission queue and transmitted at the

end. By the transmission of the End-Byte, transmission of the entire telegram is completed.

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [110]

In short, Start-Byte, End-Byte and control bytes are allocated directly in the transmission Queue. Data bytes

however are first expanded into two bytes keeping low and high nibbles separately and then put into the

transmission Queue. With this scheme of allocation in the transmission Queue, the integrity of the telegram is

granted provided that all control bytes differ from Star-Byte and End-Byte in value.

HALF MODE RECEPTION OF DETEL-T TELEGRAM (SLAVE SIDE)
The decoder machine (the component of the driver software running on the slave device) is responsible for

building DETEL-T telegram on the slave device. A Special care must be paid to the reception of the DETEL-T

telegram by the slave device.

As the slave device receives serial data, the decoder machine runs simultaneously in order to construct the

DETEL-T telegram in the RAM of the slave device. Each byte received is completely processed by the decoder

machine before the next byte appears on the serial port. The logic diagram of the decoder machine is indicated

in Fig.5.

The decoder machine filters control and data bytes. The decoder machine is actually a subroutine called by a

serial data reception Interrupt Service Routine (ISR) [4]. Remember that ISRs are called by the system when a

certain event occurs. Serial data reception ISR is called when a character (data in form of one byte) appears at

the serial port of the slave device.

Fig.4 indicates logic diagram of the decoder machine in ISR. As it is seen from the logic diagram, the decoder

machine defines a memory pointer X, a strobe signal strobe, temporary byte variable temp, and a nibble signal

nible. When a character is caught by the hardware, it is stored in a serial port receive register, UDR [4]. The

content of the receive register is transferred to a temporary variable temp. X pointer is used to point current

RAM address to which the received byte in variable temp is going to be stored. X pointer is set to the telegram

base address of the slave device, iTBAS as the XON control signal is received. It is then increased by one for

each time as the control byte or high nibble of the data byte is received.

Strobe signal strobe is used to denote the fact that the reception of the DETEL-T telegram is in action. It is set to

high as XON signal is received and set to low as XOF signal is received. Nibble signal nible is an indicator of

whether the currently received data is of high nibble (E1 byte) or not. If nible signal is equal to null, the received

data is the low nibble of the original data else it is the high nibble of the original data. If the nible is equal to

one, the original data is constructed from the previous data stored in variable nkeep and current data stored in

the variable temp. So constructed original data is then located to the RAM position pointed by X pointer. After

allocation of original data, X pointer is increased by one pointing to the next position in the RAM.

For the programmers, it is worth here to state that the sequence of logic comparisons in the logic diagram is

important and should not be changed.

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [111]

Fig.5: Decoder Machine Building DETEL-T Telegram in Slave Device

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [112]

DETEL-A HIGH LEVEL APPLICATION PROTOCOL
DETAL-A is a high level application protocol. Control bytes are implemented as indicated in Table 1.

Table.1: Implementation of DETEL-A High Level Application Protocol.

Index segment member Explanation

0 Start

XON

START BYTE (0xFD):

It indicates the start of the telegram

1 control CMD0

(CTRL-1)

LOW COMMAND BYTE:

It is the low byte of the command.

It is implemented for MDxx series of PLCs.

2 control CMD1

(CTRL-2)

HIGH COMMAND BYTE:

It is the high byte of the command. It is reserved to increase

number of commands for different applications.

3 control ADD0

(CTRL-3)

ADRESS BYTE 0:

Address byte 0. First address byte. Address bytes are used for the

addressing purpose in the slave device. There are total of four

bytes for addressing space and are adequate for addressing 4 Giga

byte address space.

4 control ADD1

(CTRL-4)

ADRESS BYTE 1:

Address byte 1. Second address byte.

5 control ADD2

(CTRL-5)

ADRESS BYTE 2:

Address byte 2. Third address byte.

6 control ADD3

(CTRL-6)

ADRESS BYTE 3:

Address byte 3. Fourth address byte.

7 NILL

(CTRL-7)

ZERO BYTE (0xFC):

Zero byte. Nill is the value which should be interpreted as zero.

8 control RSV0

(CTRL-8)

Reserved :

Reserved for future use.

9 control RSV1

(CTRL-9)

Reserved:

Reserved for future use.

10 control RSV2

(CTRL-10)

Reserved:

Reserved for future use.

11 control CNT

(CTRL-11)

DATA COUNT BYTE:

Count of data byte. It indicates number of data bytes in the

telegram. It cannot exceed 255.

12 data DAT0 DATA:

First byte of data.

13 data DAT1 DATA:

Second byte of data.

..

..

CNT+11 data DAT[CNT-1] DATA:

Last byte of data.

 crc CRC-L Cyclic Redundancy Check. Not yet implemented

 crc CRC-H Cyclic Redundancy Check. Not yet implemented

CNT+12 end XOF END BYTE (0xFE):

It indicates the end of the telegram.

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [113]

Table.2: DETEL commands

These commands are completely used by MDxx series of PLC’s to communicate with the host PC. They are

explained in briefly through tables [3-14].

The DETEL protocol is integrated into the Program Developing Environment (KUMANDA) of the MDxx series

of PLCs. Here the PC, on which the KUMANDA runs, acts as master device and the PLC acts as a slave device.

The PLC device has a reduced instruction set controller of ATMEGA16 with multiple IO channels as a centre

processing unit [4]. A permanent firmware Virtual PLC Machine, VPM, which builds a PLC machine on the

controller, is preinstalled.

Master driver of the DETEL protocol is done in C++ and integrated into the KUMANDA. Slave type

implementation of the DETEL protocol is done in avr-assembler language and embedded into the VPM. For the

sake of completeness, primary commands which are implemented in DETEL-A protocol are listed in Table.2.

TEST AND RESULT
The echo command is executed on the KUMANDA in order to indicate that the DETEL Serial Data

Transmission Protocol is running as expected. Fig.6 shows the screen snippet of the KUMANDA after

execution of the echo command.

The echo command keeps 128 (0x80) data bytes. Data bytes start from 0 (0x00) and enumerates till 127 (0xFD).

When the slave device detects an echo command in the received telegram, it reflects the entire telegram back to

the master device by using the DETEL-T protocol. The reflected telegram is caught by KUMANDA and

displayed on the output screen after formatting. What is sent by the master is received back entirely as expected.

DISCUSSION & CONCLUSION
Although DETEL Serial Data Transmission Protocol is principally designed for communicating electronic

devices forming a single master-slave system, multi slave systems forming ring or star type connection in

topology, can also adopt DETEL Protocol to build communication among their members. In those systems,

however, DETEL Telegram should be slightly modified for addressing slave devices with which the master

wants to communicate because each device in the network (connection) has to have unique device identification

throughout the network. Only the slave with which the master wants to speak must react to the coming telegram.

It is possible to implement one the of reserved control bytes as a slave address in DETEL Telegram. In cases

where one byte does not cover the address range in network, combination of reserved bytes can be used

DETEL Protocol can further be used among intelligent electronic elements lying on a single printed board. Two

micro controllers which are serially connected to each other, either through I²C or TWI interfaces, for instance,

can adopt DETEL Protocol for mutual communication purposes.

The transmission speed of the DETEL Protocol is dependent upon the physical connection among devices. It is

obvious that the effective data transmission speed is reduced because of the nature of the half mode transmission

of DETEL Telegram.

command cmd1 cmd0 explanation

SP_HALT 00 0x81 enter system into halt mode

SP_WRFL 00 0x82 write data in program memory

SP_RESET 00 0x83 reset

SP_CLEAR 00 0x85 clear pages in user section

SP_ECHO 00 0x86 echo

SP_WREP 00 0x87 write EEPROM

SP_RDEP 00 0x88 read EEPROM

SP_RRAM 00 0x89 read ram

SP_WRAM 00 0x 8A write ram

SP_CODE 00 0x 8B write module Id in RAM

SP_CNTN 00 0x 8C continue – exit halt mode

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [114]

Although maximum data count is limited by the maximum value of one byte, (0xFF), it can easily be extended

by defining a new command in which length of data is redefined by making use of reserved control bytes.

Fig.6: Verification of Echo Command in KUMANDA

On the light of aforementioned discussion it can be conclude that the DETEL Serial Data Transmission Protocol

can be engaged in following communicating system(s) without yielding any problem.

 System where a new set of command is to be defined.

 System where slave device is expected to send back an acknowledgment on the reception of a

command. In those cases it makes sense defining a set of acknowledgments in form of DETEL

Telegram.

 System where interactive communication is preferred rather than dummy slaves.

[Dülger * 6(5): May, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [115]

PROPOSAL
The main short coming of the DETEL Data Transmission Protocol lies in the half mode transmission of the

DETEL Telegram. This short coming can be eliminated by implementing full mode transmission of the DETEL

Telegram.

In full mode transmission, duplication of the data byte would be avoided by defining a new sequence of Special

Bytes (eighth specially defined bytes in sequence, for instance). This sequence of bytes is pre hanged to the data

byte if the data byte is equal to either Start- or End-Byte in value. So modified data segment will be transmitted

by the master device directly without further expansion. On the slave side, the decoder machine should

recognize the sequence of Special Bytes and interpret there after coming byte as the data byte although it is

equal to either Start- or End-Byte in value. Start- and End-Byte will only be valid control bytes if they do not

appear after the sequence of Special Bytes. Otherwise they will be accepted as a data byte.

Such an algorithm would reduce duplication of the data byte remarkably and proposed by the author as the next

study.

ABBREVIATION
 RS232: RS323 serial interface

PLC: Programmable Logic Control.

PC: IBM Personal Computer.

KUMANDA: Integrated Development Environment for the MDxx series of PLCs.

XON: Start byte in DETEL Telegram.

NILL: Null byte in DETEL Telegram.

XOF: End byte in DETEL Telegram.

iTBAS: Telegram Base.

ISR: Interrupt Service Routine.

REFERENCES
1. MDxx Series of PLCs, ‘ http://www.plcturk.com’

2. International Organization for Standardization, “Open System Interconnection (OSI)”

‘https://www.iso.org/ics/35.100/x/’

3. KUMANDA, ‘Integrated Developing Environment’, IDE, for Programming MDxx Series of PLCs,

‘http://www.plcturk.com/webserver/kumanda/IDEList_01.htm ‘

4. ATMEL, ATmega16 Data Sheet, Serial Port Data Receive Register, ‘ http://www.atmel.com ‘.

http://www.plcturk.com/
https://www.iso.org/ics/35.100/x/
http://www.plcturk.com/webserver/kumanda/IDEList_01.htm
http://www.atmel.com/

